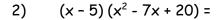
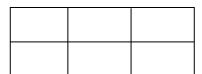
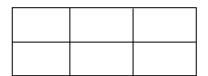

Looking Back: To rewrite quadratic equations standard form, you have used a box or double distribution to multiply the factors:

a) (x+5)(x-7) =_____

b) (2x -4)(3x - 1) = _____

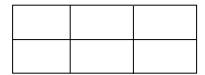

3(x-4)(x+6) = _____ c)

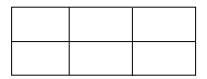

Does the order of multiplication matter? Explain.


Practice: C-Level Using the same methods, we can also multiply higher degree polynomials.

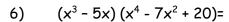
 $(x-9)(x^2+3x-9)=$ 1)

Answer:_____

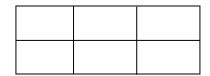




3) $(3x + 1)(x^2 + 2x + 8) =$ 4) $(x-8)(x^2+12)=$


Answer:____

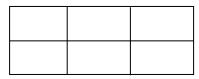
Answer:_____



5) $(x^2 - 9)(x^2 + 8x - 4) =$

Practice B-Level

7)
$$(x-8)(x+4)(x-7) =$$


8)
$$(2x + 4)(x-7)(x + 3)=$$

Answer:_____

Answer:_____

9) $(x+5)(3x-4)(x-4)^2 =$

Looking Ahead Investigation:

Name three tools you can use to find x-intercepts. Then apply those methods below.

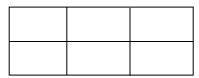
1.

2.

3.

a)
$$x^2 - 2x - 63 =$$

b)
$$x^2 + 8x - 33 =$$


c)
$$3x^2 - 11x + 6 =$$

d)
$$6x^2 - 13x + 5 =$$

e) $3x^2 - 7x - 4 =$

f)
$$y = x^3 + 12x^2 + 44x + 48$$
 given one factor is $(x+2)$.

Hint: this can help

